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PREFACE

The text of this Memorandum, prepared as a briefing

for the Air Force Scientific Advisory Board meetinq on
"Military Preparedness in Space," indicates some critical

information processing problems implied by Air Force space

objectives (and also by other Air Force objectives) and
recommends steps for attacking these problems. It should

be of interest to military and civilian space planners,

and to military information system playiners in general.

This Memorandum has benefited greatly from discussions

with J. P. Haverty and W. H. Ware of The RAND Corporation.



-iv-

"* FOR SOME COMPUTING CAPABILITIES, USAF MUST

ACTIVELY PUSH R&D

"* ON-BOARD COMPUTERS: BUY 50% - 100% EXCESS

CAPACITY TO MINIMIZE TOTAL SYSTEM COSTS

"* STS: SOFTWARE DEVELOPMENT IS ALREADY ON THE

CRITICAL PATH

"• SOFTWARE CERTIFICATION PROBLEM UNDEREMPHASIZED;

CONSIDER DEDICATED SOFTWARE TEST FACILITY

SUMMARY



_v-

SUMMARY

Most military space operations during the 1970s will

not strain the available information-processing capabili-

ties. But there are some operations--real-time image pro-

cessing, multi-sensor data analysis, decision-oriented dis-

plays, and others--for which the Air Force will not be able
to reach "on the shelf" and find tools capable of doing the

job. The USAF will have to settle for reduced capabilities

in these areas, unless space-mission planners more thoroughly
investigate their detailed information processing require-

ments and couple them more effectively to the USAF R&D pro-

gram in information processing.

In this Memorandum (the text of a briefing), an analysis

of observed software cost trends indicates that the overall

cost of an on-board computing system is generally minimized
by procuring computer hardware with at least 50 percent to

100 percent more capacity than is absolutely necessary.

The proposed Space Transportation System (STS) wilt

strain the available information processing capabilities.

Historical data on similar software projects indicate that

six or seven calendar years are probably required to design,
develop, and check out the software for a project of the
magnitude and complexity of STS. To make sure that software

does not slip the overall schedule, STS planners must begin

to design the software now. Also, the USAF should push R&D

on high-capability flight computers for STS.

Preprogrammed space software in the seventies will

allow many more user options. Serious consideration is

being given to "programmer-astronauts" and real-time soft-
ware modification to provide non-preprogrammed flexibility

to USAF space-mission operations. But, coupled with our O

inadequate capabilities to check out and certify software,
such measures could have disastrous consequences in

escalating strategic crises or degrading critical defense
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capabilities because of undetected errors in software

options or modifications. The Air Force could markedly
improve the situation by following its hardware develop-

ment philosophy and establishing a dedicated facility
for software testing and certification, along with

operational procedures for using the facility during a
major software project development.
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HARDWARE TRENDS AND OPERATIONAL REQUIREMENTS

This Memorandum opens with some estimates of computer
hardware capabilities that the Air Force can reasonably ex-

pect to find "on the shelf" during the 1970s. Following
these estimates are discussions of 1) how best to use these
capabilities when they are easily sufficient to do the job,

and 2) some space operations for which these capabilities
will be either barely sufficient or insufficient.

Amdahl [1 has indicated the probable computing capa-
bilities that the current pace of technology will yield to
support USAF missions in the seventies. Due primarily to

advances in large-scale integrated circuit (LSI) technology,
the speed of ground-based computers will increase from
6,000,000 instructions/sec to 60,000,000 instructions/sec
between 1970 and 1980. Also, during this period the speed
of spaceborne computers will increase from 500,000 instruc-

tions/sec to 4,000,000 instructions/sec due to advances
both in LSI and circuit-packaging technology.

However, Amdahl's analysis indicates that--to the ex-
tent that transfers to and from high-speed memory are un-
predictable (due to real-time interrupts, accesses to lower-

speed memory, etc.)--the actual performance realized by the
computer as a system will drop by a factor of four (to
15,000,000 operations/sec) for ground-based computing and

by a factor of two (to 2,000,000 operations/sec) for space-
borne computing.

The advances in speed will be accompanied by advances

in hardware reliability and reductions in cost, size, weight,
and power requirements for spaceborne computers. For ex-

ample, Amdahl estimates that the size of an 8,000,000-bit
memory will decrease from 75 cubic feet in 1970 to 2 cubic
feet in 1980.
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MOST JOBS WILL NOT HAVE TO STRAIN THE HARDWARE

The computing capacity available during the 1970s

will easily accommodate most of the information processing
requirements of USAF space missions. Current concepts of
navigation satellite systems, life support and environ-
mental monitoring for manned missions, and basic systems

for attitude control and trajectory guidance and control
easily fall within this category. (Some operations that
will strain this computing capacity are discussed below.)

However, it is still very easy to produce a situation

in which computing capacity is strained. One way is to
procure a small computer to decrease hardware costs, when
larger ones are available. Another is to absorb any excess

computing capacity with marginally useful tasks. As the
next figure indicates, both of these practices can gravely

inflate software costs.
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ON-BOARD COMPUTING: SOFTWARE COSTS

This figure shows how dramatically software costs in-

crease as one strains the capacity of the computer's central
processing unit. It is based on the experience of North

American Rockwell's Autonetics Division in developing a

large body of software for aircraft, missile, and space-
borne computers [2].

Why does the curve look like this, and not like the
"folklore" curve? Primarily because when one is pushing
the computer's capacity, slight gains in program efficiency

can only be bought at the cost of logical complexity. Ma-
chine language must be used instead of higher-order languages

like FORTRAN; several elements of data must be packed into
a single machine word; and many tricky programming short-

cuts must be employed with scaling, reusable portions of
code, and the like. All of these make the program not only
harder to write but also much harder to check out, modify,

and coordinate with other operations.

Thus, the figure indicates that current folklore-based

practices of specifying computer hardware by sizing the
data-processing task and adding perhaps 15 percent for con-

tingencies are highly inappropriate if software constitutes

an appreciable port4.on of the cost of the data-processing
system, or if the sizing is subject to any significAnt error.
The next two figures quantify this conclusion.
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ON-BOARD COMPUTING: TOTAL SYSTEM COSTS

Suppose that one has sized a data-processing task and
determined that a computer of one-unit capacity (with re-
spect to central processing unit speed and size) is required.
The figures on the opposite page show how the total data-
processing system cost varies with the amount of excess

Control Processing Unit (CPU) capacity procured for various
estimates of the ratio of ideal software-to-hardware costs

for the system. The calculations are based on the previous
curve of programming costs and two models of hardware cost:
the linear model assumes that cost increases linearly with
increases in CPU capacity; the "Grosch's Law" model assumes

that cost increases as the square root of CPU capacity.

Sharpe's data [3] indicates that most applications fall some-
where between these models.

It should be remembered that the curves are based on
imprecise observations; they clearly cannot be used in "cook-

book" fashion by system designers. But even their general
trends make the following points quite evident:

1) Overall system cost is generally minimized by
procuring computer hardware with at least 50 per-

cent to 100 percent more capacity than is absolutely

necessary.
2) The more the ratio of software-to-hardware cost

increases (as it will markedly during the seventies),

the more excess computing capacity one should pro-
cure to minimize the total cost.

3) It is far more risky to err by procuring a computer
that is too small than one that is too large. This
is especially important since one's initial sizing

of the data-processing job often tends to under-
estimate its magnitude.

"Ideal software" costs are those that would be in-
curred without any considerations of straining hardware
capacity.
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Of course, buying extra hardware does not eliminate

the need for good sot.ware engineering thereafter. Careful
configuration control must be maintained to realize properly
the benefits of having extra hardware capability, as there
are always strong Parkinsonian tendencies to absorb excess

capacity with marginally useful tasks.

p
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SOME CHALLENGING REQUIREMENTS

As indicated above, the computer hardware available
during the seventies will allow system designers the "luxury"
of procuring excess computer capacity for most space opera-
tions. However, some information-processing requirements of
the military space program will present strong challenges,
including the correlation and analysis of data from large
numbers of independent sensors; the analysis and design of
decision-oriented displays for military commanders; and the
general problem of software engineering, or management of
large software projects. This Memorandum, however, concen-
trates only on three representative topics: 1) real-time
image processing, 2) Space Transportation System (STS)
operations, and 3) software certification.
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REAL-TIME IMAGE PROCESSING

The requirements for real-time image processing are

implicit in many military operations involving such ac-

tivities as surveillance, strategic warning, and damage

assessment. The figure opposite indicates the rough number

of computer operations required to perform a typical se-

quence of tasks on a rather modest image containing 10 7

points and 108 bits of information. (For comparison, the

Mariner 6 and 7 photographs had about 107 bits [4]; high-

resolution Luner Orbiter pictures have 5.108 bits; high-

quality aerial photographs have up to 10 1 1 bits [5].) The

right-hand number in the operations/image column represents

the number of operations required if no effort is made to

conserve operations; the left-hand number reflects straight-

forward use of standard programming shortcuts for this type
of task. The cross-correlation entries are an exception;

there the range reflects whether one is cross-correlating

with respect to a single point or with respect to the

entire image of 107 points.
Thus, even using currently efficient techniques, one

cannot perform these tasks in much less then 109 computer

operations. On a 1980 computer, realizing 15-106 operations/

sec (see figure, p. x), this would take about 67 seconds:

functional for some activities, but not very satisfactory

for military command and control. Even given the ideal

computing power of 60-106 instructions/sec, the task would

take about 17 seconds, and this on a relatively low-quality

image. If the Air Force wishes to use images of high quali-

ty, or perform in a real-time environment more extensive

image-processing tasks, it will be necessary to specifically

define the image-processing functions required, and to

actively stimulate research and development efforts towards

performing them rapidly.
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IMAGE PROCESSING CONSIDERATIONS

Parallel processing might seem an ideal solution to
the real-time image-processing problem because many of the
image-processing tasks involve identical local operations
among neighboring image points. Thus, to speed things up
by a factor of N, one simply buys N parallel processors.
However, recent experience on the Illiac IV experimental
multiprocessor indicates that even jobs highly suited for
parallel processing still carry a residual serial proces-
ing burden of about 5 percent. This experience, if typical,
limits the gains due to parallel processing to a factor of
20.

Over a period of years, an image archive could build up
to a storage requirement of 1013-1015 bits, with associated
problems of defining an appropriate indexing and cataloging
scheme for images and a related query language for users.
Also, the space-time tradeoff Question--either storing
multiple copies of an image or storing a single copy and
reprocessing it on demand--must be appropriately resolved.

One promising role for man in space involves the in-
terpretation of image data and subaequent reconfiguration
of sensors, and transmittal of summary information to the
ground. This would greatly reduce the daily communications
and ground-processing load; however, if during a crisis the
ground operators want to be able to do their own processing,
one would have to provide the communications and ground-
processing hardware anyway. Also, another alternative for
getting man's capabilities into space deserves further con-
sideration: the use of remote-controlled teleoperators [6,71.

The Air Force should not expect any miracles of automated
pattern recognition to sweep away the image-processing problem.
If specific mission-oriented image-processing functions can
be defined and given R&D priority, however, the USAF can expect
the results to yield solid, if perhaps unspectacular, im-
provements in processing algorithms, which also can be called
useful contributions to pattern-recognition research.
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INFORMATION PROCESSING: STS INNOVATIONS

As currently conceived, the Space Transportation System
(STS), or space shuttle, involves two major information-pro-

cessing innovations.
The first is the use of an on-board computer to control

the countdown and launch of both the STS vehicle and its
interfaces with any number of diverse payloads (and perhaps
the payloads themselves) in order to eliminate expensive
ground checkout equipment and operations. Some precedents

exist in airplane operations, but space booster operations
will have many significant differences.

The second major innovation involves radical advances

in flight control: the on-board computer solving heating

and structural equations in real time as inputs to a
control scheme that would minimize differences between
the stress history of the vehicle and that of the nominal
flight plan. This would permit a considerably lighter

structural design and a correspondingly lower cost-per-
pound of payload in orbit.

Will the available computer hardware support these
innovations? At this time it is very difficult to say
because little effort has gone into analyzing the infor-
mation processing alternatives available to STS; e.g.,
centralized versus distributed launch checkout control,
software versus special-purpose hardware for signal pro-
cessing, or analytic versus tabular expression of flight-

control functions. However, a general feel for the magni-
tude of the problem can be gained from the estimates in
the next figure.
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STS: HARDWARE IMPLICATIONS

This figure shows some estimates by Bellcomm [81 and
Autonetics [2] of on-board computing requirements for

missions similar to those of STS. The Bellcomm estimates
for checkout requirements depend on the number of test
points monitored, and whether or not the computer performs
diagnosis and trend analysis over and above monitoring.

For reference, a system such as Apollo, with about 7000
test points, would require a computer memory of 250,000
words and a speed of 400,000 operations/sec to perform
checkout monitoring, diagnosis, and trend analysis.

Even without considering the added demands of the in-
novations in flight control, the total load on the STS on-
board computer will be heavier than any present-day flight
computer (e.g., the IBM 4-PI) can support. Even the com-
puters predicted for 1975 by Amdahl would be hard-pressed
to handle the load. Thus STS will perforce be in the

position of straining the on-board computer hardware
capacity, a situation that was shown in the figures on
pp. 4 and 6 to have serious consequences for software
development.

A useful strategy would be for the Air Force to
push the development of high-capability flight computers.
If hardware manufacturers are provided incentives beyond

those of the commercial flight-computer market (most of
which can be serviced by relatively low-capability com-
puters), it should be possible to improve on Amdahl's

nominal estimates of future spaceborne hardware capability.
Still, the complexity and indefiniteness of the STS infor-
mation-processing task carries serious software implications,

as seen in the next figure.
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STS: SOFTWARE IMPLICATIONS

The STS software will be quite extensive, the programs
requiring considerably more than 30,000 words. Also,

neither the hardware nor the software techniques for the
STS on-board processing have been specified. Considering

these attributes in the context of other on-board program-
ming jobs reported in an SDC study [9], one can easily

expect STS on-board program development to require five
to seven years of calendar time. Thus, if one wants to
fly an STS by 1976 or 1977, it is necessary to begin de-
signing the software now.

specifically, as much immediate effort is needed to
resolve such questions as centralized versus distributed
checkout control, and software versus special-purpose hard-
ware for signal processing, as is needed for questions of
propellant tanking, thermal protection, and the like. The
Air Force must make sure that appropriate software contrac-
tors begin now to analyze STS information-processing prob-
lems in detail.

The above estimate, based on analogy and extrapola-
tion, cannot be precise. If STS planners are not careful,
however, to avoid the pitfalls of poor software engineering
[10-12], or if the USAF has not developed and retained

skilled software management personnel, the situation could
become much worse. On the other hand, there are mitigating
factors: the availability and increased feasibility of
using higher-level programming languages; and the avail-

ability of floating-point arithmetic in on-board computers

(some 30 percent of the Apollo programming effort was
devoted to fixed-point scaling ).

A percentage of this magnitude, coupled with the
rising costs of software in general, indicates the necessity
for stronger Air Force requirements on the inclusion of
floating-point hardware in on-board computers.
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SOFTWARE CERTIFICATION

Having major projects like STS slip their schedules
because of a software lag could be a serious problem. But
there are software problems that could be far more serious:
escalating a strategic crisis situation or degrading critical
defense capabilities because of software errors.

Consider the following scenario: During a fairly tense
situation, the Soviet Union sends up a large, new satellite.

We decide to use a previously untried combination of sensors
on an inspection satellite to take a look--an option avail-
able under the computer program that controls sensor se-
quencing. But under a certain unlikely combination of con-

ditions, which was not checked out, this software option
also activates a high-intensity electron beam used for war-
head detection. This happens during the mission, and the
electron beam kills a crew of six in the satellite.

In this or similar situations, a software error could
quickly precipitate a dangerous strategic confrontation.
Or, even worse, a software error could incapacitate a key

component of our defense structure at a critical time.
But such things could quite easily happen, especially

as softwar• becomes more and more complex. The likelihood

increases even further if we opt for real-time reprogram-
ming, or programmer-astronauts, without a great deal more

attention to real-time software certification.
Software certification is not easy. Ideally, it means

checking all possible logical paths through a program; there
may be a great many of these. For example, the next figure
shows a rather simple program flowchart. Before looking

at the accompanying text, try to estimate how many different
possible paths through the flowchart exist.
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DIFFICULTY OF FULL SOFTWARE CERTIFICATION

Even through this simple flowchart, the number of dif-

ferent paths is about ten to the twentieth. If one had a
computer that could check out one path per nanosecond

-9(10 sec), and had started to check out the program at

the beginning of the Christian era (1 A.D.), the job would

be about half done at the present time.

So, how does one certify a complex computer program

that has incredibly more possible paths than this simple
example? Fortunately, almost all of the probability mass

in most programs goes into a relatively small number of

paths that can be checked out.

But the unchecked paths still have some probability

of occurring. And, even in the most thoroughly checked
systems, software errors can occur. The next section dis-

cusses this problem and its effect on the Apollo program.
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APOLLO SOFTWARE CERTIFICATION

As the figure indicates, the Apollo flights provide

outstanding examples of thoroughness in testing computer
systems (13]. Assuming that the testing system can certify
one path through the program per millisecond, 200 hours of
testing would check out 720,000,000 different paths. Yet

there are many more paths, and sometimes one of them that
produces a wrong result is encountered during an Apollo
mission. On Apollo 8, an unforeseen sequence of astronaut
actions destroyed the contents of a word in the computer's

erasable memory--fortunately, not a critical error in this
case. And on Apollo 11, the data flow from the rendezvous
radar was not diverted during the critical lunar landing
sequence, causing a computer overload that required Astro-
naut Armstrong to divert his attention from the process of
landing the spacecraft--fortunately, again, without serious
consequences.

Computer support of some military space missions will
be at least as complex as that of Apollo, with two additional

factors that will render the software certification problem
even more difficult. First, the military systems will be
far less organized about achieving a single objective;

second, they will rarely have as much time to check out
program modifications.

One might feel that the difficulties in checking out
the Apollo computer system would disappear if there were only
one or two functional changes rather than several hundred.

To some extent, this is true--but consider the next figure.
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CERTIFICATION AND SMALL SOFTWARE MODIFICATIONS

These observations on modifying computer programs indi-
cate that small modifications have a better chance of working
successfully than do large ones. However, even after a small
modification, the chance of a successful first run is, at
best, about 50 percent. In fact, there seems to be a sort
of complacency factor operating that makes a successful first
run less probable on modifications involving a single state-
ment than on those involving approximately five statements--
at least for this sample.

At any rate, it appears that the problem of certifying
software modifications does not disappear even for small
changes. And, since there are generally many paths a pro-
gram may take to and from the region of software that has
been modified, the certification problem is still extremely
difficult.

How can we improve the certification situation? The
next figure gives some indications.

The size and context of the sample preclude the results
in the figure from being definitive for real-time military
software; but there is no strong reason to believe that the
basic trends of the data would markedly differ. But, sur-
prisingly, no such data seems to be available on real-time
military software. A USAF program to capture such data as
this on software development, modification, and checkout,
would not be very expensive--and certainly quite valuable
from a software planning standpoint.
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SOFTWARE CERTIFICATION: POSSIBLE IMPROVEMENTS

One common way of certifying aerospace software is to
simulate it, along with some part of its operating environ-

ment, on another machine--generally a more powerful ground-
based computer. Usually, much of the simulation is pro-
grammed in machine language, and thus is characteristically

difficult to create, modify, and understand. A language
especially designed for simulating computer systems could
markedly improve the situation. Several promising candi-

dates are being developed or refined, including SIMUPOL [14],
IBM's CSS [15], and ECSS, being developed by Rand for
NASA/ERC [16].

Another common way of certifying an on-board computer
system is to use a general-purpose computer to create

stimuli for the on-board system and to evaluate its re-
sponses. However, major benefits might result from in-
corporating special-purpose extensions to the checkout com-

puter; for example, parallelism for efficiently checking
independent operations or carrying along multiple evalua-
tion functions, or associative processing for identifying
when the contents of key registers take on critical values.

Certifying a computer system implies being able to
measure what it is doing. Yet many systems are still de-

signed or implemented simply to maximize performance or to
minimize response time, with little or no attention to
facilitating measurement. Only later does the necessity
for measurement arise, resulting in costly retrofits and
poorer performance. Certainly, the SAGE experience [17]

indicates the folly of such an oversight.
If a program is being modified on-line, it should be

possible to exercise immediately the modified program by

executing it interpretively with respect to several sets
of nominal and critical input parameters. Thus, the on-
line programmer (or his testing associate) could perform
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a good deal of checkout on a modification before incor-
porating it in the program. For a discussion of other
certification techniques see Ref. 18.

The USAF has certainly found the advantages of a

dedicated hardware testing organization sufficient to justify

considerable expenditures on hardware test facilities. A

dedicated software-testing organization would offer com-
parable advantages; these are enumerated on the next page.
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DEDICATED SOFTWARE TESTING FACILITY: ADVANTAGES

Among the advantages of a dedicated testing facility

are:

Continuity. The testing staff does not disband at the

end of each project. Being process-oriented
rather than project-oriented, it can build on

accumulated testing experience and develop special

tools to make testing more thorough and efficient.
Motivation. The testing staff member is working for

the client, not against his colleagues who de-

veloped the system. There is no institutional

bias toward calling the system a success.
MuscZe. The testing organization generally has the

ear of the client, and can influence the system
development specifications to make sure that

testing considerations are appropriately included.

On the hardware side, the Air Force realizes these

advantages with the inertial guidance test facility at

Holloman AFB, Materials Lab at Wright-Patterson AFB, the

environment simulators at Arnold AFB, the electronics-

testing facilities at Hanscom AFB, and many others. But

how many dedicated, project-independent software-testing

facilities does the USAF have? None.
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ANALYSIS CODING CHECKOUT
AND AND AND

DESIGN AUDITING TEST

SAGE 39% 14% 47%

NTDS 30 20 50

GEMINI 36 17 47

SATURN V 32 24 44

COMPUTER PROGRAM DEVELOPMENT BREAKDOWN
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RELATIVE IMPORTANCE OF SOFTWARE TESTING

The data presented here come from Rand and SDC studies
19,193 indicating that these examples of comuand-control
and spaceborne programming projects are typical of such
projects in general, with regard to the percentage break-
down of software development. Thus, during the 1970s the
Air Force can expect to spend almost half of its software
budget for military space operations on the checkout and
test phases of computet-program implementation: two to
three times as much as it will pay for having the programs

coded.
How much will this be in dollars? This is highly un-

certain; but for a rough comparison, suppose that the total
computing bill for military space operations during the

seventies is about the same as NASA's computing bill for
manned space-flight operations during the sixties, which
Nehama estimates at about two billion dollars (20]. Assum-
ing, generously, that hardware and software costs will be
about equal, we arrive at a budget of about $500,000,000

for software checkout and tests associated with military
space operations in the coming decade.

Given a cost of this magnitude, it would not be dif-
ficult to justify a dedicated software-testing facility on
strictly an economic basis. But this would be inappropriate.
It must be justified primarily on a military preparedness
basis. The nation's defense can little afford to be con-
strained by inflexible software. But even less can the
nation afford to be drawn into strategic crises, or have
its defenses weakened, because of errors in software options
or modifications.

O
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SOFTWARE CERTIFICATION: A FIRST STTP

The software certification problem confronts the Air

Force as seriously in other major areas--strategic and

tactical command and control, and air defense--as it does
in space operations. Of course, it is also a major concern
in the operations of NASA, the U.S. Navy, U.S. Army, and

other agencies.
But, since the greatest concern with the problem falls

to the Air Force, it is at once the opportunity and the
responsibility of the Air Force to provide leadership in
developing improved techniques and facilities for software
certification.

An important first step would be to compile a defini-
tive study on software-certification practices in the Air

Force, including:

1) Existing techniques and facilities in the Air

Force;
2) Existing techniques and facilities in other

agencies;

3) Promising new approaches to software certification;

4) Distribution of Air Force software research effort:
does 45 percent to 50 percent go towards testing-

oriented research?
5) Nature and feasibility of a dedicated Air Force

facility for software testing.

ip
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CONCLUSIONS

Most military space operations during the 1970s
will not strain .e available information-processing capa-

bilities. But there are some operations--real-time image
processing, STS on-board computing, multi-sensor data

analysis, decision-oriented displays, and others--for which

the Air "orce will not be able to reach "on the shelf" and
find tools capable of doing the job. The USAF will have to

settle for reduced capabilities in these areas unless space-
mission planners more thoroughly investigate their detailed
information-processing requirements and couple them to the
USAF R&D program in information processing.

Overall cost of an on-board computer system is minimized

by procuring computer hardware with at least 50 percent to
100 percent more capacity than is absolutely necessary. The

optimal excess hardware capacity will increase as the ratio
of software-to-hardware costs increases during the seventies.
Furthermore, it is far more risky to buy too little excess
hardware capacity than too much. However, buying extra
hardware does not eliminate the need for careful software-
configuration control thereafter.

The proposed Space Transportation System (STS) wiZZ

strain the available information processing capabilities.
Historical data on similar software projects indicate that
six or seven calendar years are probably required to design,
develop, and check out the software for a project of the
magnitude and complexity of STS. To make sure that soft-

ware does not slip the overall schedule, STS planners must
begin to design the software now. Specifically, the Air
Force should be devoting as much contractor effort to such
questions as centralized versus di3tributed launch checkout

control and software versus hardware for signal processing
as is currently being devoted to thermal protection and
propellant-tanking alternatives. Furthermore, the USAF

should push R&D on high-capability flight computers for STS.
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Preprogrammed space software in the 1970s will

allow many more user options. Serious consideration is
being given to "programmer-astronauts" and real-time soft-
ware modification in order to provide non-preprogrammed

flexibility to USAF space-mission operations. But, coupled

with our inadequate capabilities to check out and certify

software, such measures could have disastrous consequences
in escalating strategic crises or degrading critical de-

fense capabilities because of undetected errors in soft-

ware options or modifications. The USAF could improve the

situation by following its hardware-development philosophy

and establishing a dedicated facility for software testing,
along with operational procedures for using the facility
during a major software project's development. The USAF

should establish a study group to report on current certifi-

cation practices and the feasibility of such a dedicated

facility.
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